
A New Compensation Technique

Based on Analysis of Resampling Process in FastSLAM

Nosan Kwak ∗

School of Electrical Engineering

Seoul National University

robot97@snu.ac.kr

Gon-Woo Kim †

Applied Robot Tech.

KITECH

kgw0510@kitec.re.kr

Beom-Hee Lee ‡

School of Electrical Engineering

Seoul National University

bhlee@snu.ac.kr

Abstract

The state-of-the-art FastSLAM algorithm has been shown to a cause particle depletion prob-

lem while performing simultaneous localization and mapping for mobile robots. As a result, it

always produces over-confident estimates of uncertainty as time progresses. This particle deple-

tion problem is mainly due to the resampling process in FastSLAM, which tends to eliminate

particles with low weights. Therefore, the number of particles to conduct loop-closure decreases,

which makes the performance of FastSLAM degenerate. The resampling process has not been

thoroughly analyzed even though it is the main reason for the particle depletion problem. In

this paper, standard resampling algorithms (systematic residual and partial resampling), a rank-

based resampling adopting genetic algorithms are analyzed using computer simulations. Several

performance measures such as the effective sample size, the number of distinct particles, estimate

errors, and complexity are used for the thorough analysis of the resampling algorithms. Moreover,

a new compensation technique is proposed instead of resampling to resolve the particle depletion

problem in FastSLAM. In estimate errors, the compensation technique outperformed other re-

sampling algorithms though its run-time was longer than those of others. The most appropriate

∗Ph. D. Student
†Ph. D.
‡Professor, Fellow, IEEE

1

time to instigate compensation to reduce the run-time was also analyzed with diminishing the

number of particles.

keywords: FastSLAM, Particle filter, Resampling, Particle depletion, Compensation, Mobile robot

1 Introduction

The simultaneous localization and mapping (SLAM) is a fundamental problem found in mobile

robots to perform autonomous tasks, such as exploration and navigation in an unknown environment.

SLAM can be applied in a wide range of tasks from an indoor environment1 to an underwater

environment.2 The SLAM problem occurs when a robot knows neither a map of an environment

nor its own pose in the environment. The problem is not so simple because a robot needs to obtain

a map of its environment and at the same time localize itself to the map. Moreover, the robot

has to make relative observations to its ego-motion and objects in its environment, which are both

corrupted by noise.3, 4 Therefore, environment modeling and localization should be considered as a

dual problem.5

Many approaches have been centered on the stochastic formulation of the SLAM problem in which

landmark estimates and a robot pose are obtained as probability distributions. In this point of view,

the two key computational solutions to the SLAM problem are using the extended Kalman filter

for SLAM (EKF-SLAM) and using the Rao-Blackwellized particle filters for SLAM (FastSLAM),

respectively. EKF-SLAM has served as the main approach to the SLAM problem for the last fifteen

years. However, EKF-SLAM is known to have two major well-known shortcomings: quadratic com-

putational complexity and sensitivity to failures in data association. First, since observation-update

step requires that all landmarks and the joint covariance matrix be updated at every observation,

2

computation of EKF-SLAM quadratically grows with the number of landmarks.6 Second, it is es-

pecially difficult to deal with a loop-closure problem, which occurs when a robot returns to observe

landmarks again after a large traverse. These shortcomings consequently make it difficult to apply

EKF-SLAM to real and large environments. Recently, the FastSLAM algorithm3 has been proposed

as an alternative solution to the SLAM problem. It uses a particle filter instead of the Kalman filter

to approximate the ideal recursive Bayesian filter. FastSLAM is an instance of the Rao-Blackwellized

particle filter (RBPF)7, which factors the full SLAM posteriors exactly into a product of a robot

path posterior and landmark posteriors, conditioned on the robot path estimate.8 FastSLAM has

two significant advantages over EKF-SLAM. First, by factoring the full SLAM posteriors FastSLAM

has linear time-complexity. Second, unlike EKF-SLAM, FastSLAM allows each particle to perform

its own data association, which implements multi-hypothesis data association.9 The ability to si-

multaneously pursue multiple data associations makes FastSLAM significantly more robust to data

association problems than algorithms based on incremental maximum likelihood data association

such as EKF-SLAM.10

FastSLAM, however, has some drawbacks as well. In the literatures,3, 11 FastSLAM has been

noted to degenerate over time. It is impossible to prevent this degeneracy, as proven by Kong-

Liu-Wong theorem.12 This degeneracy causes particles estimating the pose of a robot to lose their

diversity, the so called particle depletion. For example, better diversity of particles results in better

loop-closure performance because new observations can affect the pose of the robot.10 The main

reason for losing diversity of particles is due to the resampling process in FastSLAM. By throwing

away improbable paths of the robot, resampling eventually causes all of the particles to share a

common history at some point in the past, and then new observations cannot affect the locations

3

of landmarks observed prior to this point.10 Thus, keeping diversity of particles in FastSLAM is

very important for reliable loop-closure and consistent map building. When a particle set loses its

diversity, it tends to underestimate its own uncertainty. As a result, it prevents from building a

consistent map.11

Bailey et al.11 studied about the consistency of FastSLAM, which is an ability of a filter to accu-

rately estimate uncertainty. It showed that in the short-term, FastSLAM may produce consistent

uncertainty estimates, but in the long-term, it will degenerate with time, regardless of the number

of particles and the density of landmarks within an environment. It also mentioned that Fast-

SLAM always produces optimistic estimates of uncertainty. Consequently, FastSLAM is unable to

adequately explore state space to be a reasonable Bayesian estimator. However, it showed that

the algorithm is practically capable of generating an accurate map in real outdoor environments.13

They also researched how fast the diversity is lost, what the effect of loss of diversity has on the

filter’s uncertainty estimate, and how parameters such as the number of particles and landmark

density affect estimation errors.11 Grisetti et al. provided a compact map model, which can share

large parts of the model of the environment.14 However, they barely dealt with effects of resam-

pling, which is the main reason for the particle depletion problem. To limit the particle depletion

many algorithms have been proposed in the field of particle filters.15–17 Robot paths, for example,

are artificially perturbed after resampling, which resulted in enlarging the variance of importance

weights of particles.18 Grisetti et al. presented an approach to selectively carry out resampling to

reduce particle depletion.19 Higuchi proposed various heuristic procedures taken from the genetic

algorithms (GA) to introduce such a diversity among particles.20

In this paper, two things are mainly researched to alleviate the particle depletion problem. The

4

first one is a thorough analysis of resampling algorithms, and the other is a new compensation

technique to resolve the particle depletion problem.

For the analysis, standard resampling algorithms are selected among several algorithms, which are

residual systematic resampling (RSR)21 and partial resampling (PR).22 In addition, a rank-based

resampling (RBR)23 which is a sampling algorithm in GA is adopted as a resampling algorithm

especially for the particle depletion problem. These resampling algorithms are analyzed to clarify

their effects on SLAM performance. Resampling algorithms have not been thoroughly analyzed

even though they are the main reason for the particle depletion problem. In this work, the effective

sample size, the number of distinct particles, estimate errors, and complexity are used for the

thorough analysis.

More importantly, the second research is that a compensation technique instead of resampling is

proposed to prevent particles from being depleted. It probabilistically compensates particles with

low weights using particles with high weights, so no particle is rejected in a particle set. Also, for

alleviating computational cost of the compensation algorithm, scheduling of compensation is studied

to decide the time when it is most appropriate to instigate compensation using the effective sample

size. Deciding the most appropriate time to instigate resampling is still a problem to be resolved.24

To decide the time, several simulations for scheduling of compensation are performed with varying

the number of particles.

This paper is organized as follows: In Section 2, FastSLAM 2.0, which is superior to FastSLAM

1.0 in nearly all aspects, is briefly illustrated with a graphical procedure. General resampling algo-

rithms for FastSLAM are introduced in Section 3, and they are thoroughly analyzed with computer

simulations, followed by discussions in Section 4. In Section 5, a compensation technique is proposed

5

to prevent particles from being depleted, followed by discussions about its performance. Finally,

conclusion is presented in Section 6.

2 FastSLAM Algorithm

The FastSLAM’s key mathematical insight pertains to the fact that the full SLAM posterior can be

factored as follows when the correspondences c1:t = c1, ..., ct are known:10

p(x1:t, θ|z1:t, u1:t, c1:t) = p(x1:t|z1:t, u1:t, c1:t)
N∏

n=1

p(θn|x1:t, z1:t, c1:t) (1)

where x1:t is the robot path from start till time t, θ is the map, and z1:t and u1:t are the measurements

and controls till time t, respectively. N is the number of features. FastSLAM uses a particle filter

to compute the posterior over robot paths, denoted by p(x1:t|z1:t, u1:t, c1:t). For each feature in the

map, FastSLAM uses a separate estimator over its location p(θn|x1:t, z1:t, c1:t), one for each feature.

The feature estimators are conditioned on the robot path, which means there is a separate copy of

each feature estimator, one for each particle. More precisely, map feature locations are estimated

using EKFs. Due to the factorization, FastSLAM can maintain a separate EKF estimator for each

feature, which makes the update more efficient than that in EKF-SLAM. By independently keeping

the feature estimates FastSLAM avoids the quadratic cost of computing a joint map covariance

matrix. However, the dependency on the robot path is the key weakness of FastSLAM, which

means the implicit dimension of the state-space increases with time.10

A particle at time t, Y
[k]
t in FastSLAM is denoted by

Y
[k]
t = 〈x[k]

t , µ
[k]
1,t,Σ

[k]
1,t, ..., µ

[k]
N,t,Σ

[k]
N,t〉 (2)

where the [k] indicates the index of the particle, and x
[k]
t is the robot pose estimate of the k-th

6

particle at time t. Only the most recent pose x
[k]
t is used in the FastSLAM, so a particle keeps only

the most recent pose. µ
[k]
n,t,Σ

[k]
n,t are mean and covariance of the Gaussian distribution, representing

the n-th feature location relative to the k-th particle, respectively. Altogether, these elements form

the k-th particle, Y
[k]
t , and there are totally M particles and N features in a particle set. The basic

steps of the FastSLAM 2.0 algorithm are as follows:10

• Step1: Sampling. x
[k]
t ∼ p(xt|x[k]

t−1, z1:t, u1:t, c1:t)

• Step2: Measurement update. For each observed feature identify the correspondence j for the

measurement zi
t, and incorporate the measurement zi

t into the corresponding EKF by updating

the mean µ
[k]
j,t and covariance Σ[k]

j,t .

• Step3: Importance weight. Calculate the importance weight w[k] for k-th particle.

• Step4: Resampling. Sample M particles with replacement, where each particle is sampled

with a probability proportional to w[k].

A simple graphical procedure of the FastSLAM 2.0 algorithm is described in Fig. 1. For convenience,

only two particles among in a particle set are shown while performing FastSLAM. In Fig. 1(a), each

particle in the particle set at time (t−1) samples a pose using the proposal distribution which takes

the measurement zt into account. All of the sampled poses constitute a temporary particle set.

Then, each particle updates the posterior over the feature estimates, based on the measurement zt

and the sampled pose tmpx
[k]
t as shown in Fig. 1(b). As a result, in this case, the covariances of

feature estimates are reduced. The next step is to compute the importance weight for k-th particle

using the following quotient:

w
[k]
t =

target distribution
proposal distribution

7

(a) Sampling (b) Measurement Update

(c) Importance weight (d) Resampling

Fig. 1 A graphical procedure of FastSLAM 2.0 Algorithm. (a) Pose sampling of two particles:

tmpx
[m]
t and tmpx

[n]
t using control input and current measurements where the superscript tmp means

a particle is included in a temporary particle set, (b) measurement update, which is performed per

particle, (c) importance weight, and (d) resampling; particles are replicated or rejected in the set.

8

Since it is usually impossible to sample from the true posterior (target distribution), it is common

to sample from an easy-to-implement distribution, the so-called proposal distribution. As shown

in Fig. 1(c), in regions where the target distribution is larger than the proposal distribution, the

particles receive high weights, and in regions where target distribution is smaller than the proposal

distribution, the particles are given low weights. As a result, particle n received 0.8 whereas particle

m received 0.1 as importance weights. The last process is resampling, which draws M particles

with replacement from the temporary particle set. As shown in Fig. 1(d), the temporary particle

with high importance weight, tmpx
[n]
t is replicated three times, whereas the one with low importance

weight, tmpx
[m]
t is rejected or thrown away in the particle set by the resampling process. This means

the robot path and feature locations estimated by the rejected particle are lost. Thus, the resampling

is a crucial process in the aspect of diversity of particles.

3 General Resampling Process for FastSLAM

The basic idea of the resampling process is to eliminate the particles that have low importance

weights and replicate particles with high importance weights. Dependency on the robot path is

recorded in the weight of a particle and in its feature estimates. As time progresses, errors of feature

estimates become larger unless particles are resampled. Thus, the necessity of the resampling process

arises from the fact that the particles in a temporary set do not yet match the target distribution.

Resampling can avoid the particle degeneracy by weighing particles, followed by replacing particles

with the importance weights. As a result, the resulting particle set indeed approximates the target

distribution. This has been shown to allow consistent recursive estimation with the fixed number of

particles.25

9

Fig. 2 Categorization of resampling algorithms in particle filters (PF).

The innate disadvantage of FastSLAM is that past pose estimate errors are not forgotten, which

means they are recorded in the feature estimates. Whenever the resampling process is conducted,

the entire robot paths and feature estimates of rejected particles are lost forever. Consequently,

the number of particles representing past paths and feature estimates decreases. This is called the

particle depletion problem.16 In other words, the particle set loses its diversity, and it becomes

over-confident as resampling is repeated over and over again. Bailey et al. studied consistency of a

particle filter in FastSLAM, and confirmed that FastSLAM can not produce consistent estimates in

the long-term.11 However, they did not deal with various resampling algorithms, which are critical

to the particle depletion problem.

In fact, the resampling algorithms have been researched in the field of particle filters (PF)21, which

are categorized in Fig. 2. Standard algorithms used for random resampling are different variants of

stratified resampling such as residual resampling (RR) and systematic resampling (SR). The SR22

is the most commonly used since it is a fast resampling algorithm for computer simulations. The

10

partial resampling (PR)22 is to perform resampling only on particles with high weights and replace

particles having negligible weights with them. In the PF, particles with moderate weights are not

resampled. In this work, residual systematic resampling (RSR) and partial stratified resampling

(PSR) among general resampling algorithms are selected for performance analysis because the RSR

produces the identical resampling result as the SR with less operations and less memory access,21

and the PSR can adjust the number of particles participating in resampling to alleviate particle

depletion. In addition, a rank-based selection in genetic algorithms (GA) is newly proposed in this

work as a resampling method to keep particle diversity as long as possible.

The resampling process is crucial in every implementation of particle filtering because without it

the variance of the particles’ weights quickly increases. Therefore, in this section, general resampling

algorithms will be analyzed in the aspect of SLAM using several performance measures such as

number of distinct particles, the effective sample size, complexity, and estimate errors. After that,

their limitations will be shown in Section 4. Furthermore, a new compensation technique will be

suggested for resolving the limitations in Section 5.

3.1 Residual Systematic Resampling (RSR)

Standard algorithms used for random resampling are different variants of stratified sampling such

as residual resampling (RR) and systematic resampling (SR). The SR22 is the most commonly used

since it is the fastest resampling algorithm for computer simulations. The RSR21 proposed by Bolić

el al. produces the identical resampling result as the SR with less operations and less memory

access. Thus, in this section, the SR is first introduced, followed by the RSR.

The SR performs resampling in the same way as a basic random resampling algorithm with one

11

Table I Systematic resampling algorithm.

(nReplicated) = SR(L,M,w)

Generate a random number, U ∼ U([0, 1
M])

s = 0

for k = 1 to L

i = 0

s = s + w[k]

while(s > U)

i = i + 1

U = U + 1
M

end

nReplicated(k) = i

end

12

Fig. 3 Systematic resampling example. The 2nd particle, [2] is replicated twice, and the 3rd particle,

[3] is thrown away, so the number of distinct particles is reduced from 6 to 5 after the resampling.

exception. Instead of independently drawing each uniform random number, Uk from U([0,1]) for

k = 1, ...,M , where U([0,1]) denotes the uniform distribution on the interval [0, 1], and M is the

number of resampled particles, it draws U according to U ∼ U([0, 1
M]) and updates the uniform

random number by Uk = U + (k − 1)/M . The SR algorithm is shown in Table I. In the table, L is

the input number of particles, and M is the number of particles generated after resampling, and w is

an array of scaled weights of particles. The output nReplicated is an array of indices, which means

how many times each particle is replicated. For example, assume that there are six particles and

six new particles should be resampled with their scaled importance weights: w[1] = 0.2, w[2] = 0.29,

w[3] = 0.04, w[4] = 0.13, w[5] = 0.2, and w[6] = 0.14. Their cumulative weights are shown in Fig.

3. According to the SR algorithm, the first uniform random number U1 is drawn from the uniform

distribution, U([0, 1
6]), let say, U1 = 0.06. Then, U2 = U1 + 1

6 = 0.23, U3 = 0.39, U4 = 0.56, U5 =

0.73, and U6 = 0.89. After the SR, the new particle set consists of {1,2,2,4,5,6}. The second particle

is replicated twice and the third particle is rejected in the new particle set. The advantages of the SR

are that first, particles are drawn from almost all intervals, and second, it can perform resampling

relatively fast.

In the same way, the RSR algorithm draws the first uniform random number, U0 = ∆U0 but

13

Table II Residual systematic resampling algorithm.

(nReplicated) = RSR(L,M,w)

Generate a random number, ∆U0 ∼ U([0, 1
M])

for k = 1 to L

nReplicated(k) = [(w[k] − ∆Uk−1) · M] + 1

∆Uk = ∆Uk−1 + nReplicated(k)/M − w[k]

end

updates it by ∆Uk = ∆Uk−1 + nReplicated(k)/M −w[k]. The RSR algorithm is described in Table

II. In the RSR algorithm, the updated uniform random number is formed in a different fashion, that

is, it requires only one iteration loop. In addition, the RSR performs resampling in a fixed time

whereas the SR does not. The reason is that the SR replicates random number of particles, which

makes an unspecified number of operations.

3.2 Partial Resampling (PR)

The main objective of the PR22 is to perform resampling only on particles with high weights and

replace particles having negligible weights with them. Particles with moderate weights are not

resampled. In the PR, the resampling process is preceded by grouping the particles based on their

weights. The weight of each particle is compared with a high and a low thresholds, Th and Tl,

respectively. Particles with weights between those two thresholds are considered moderate and are

not resampled. Let the number of particles with weights greater than Th and less than Tl be denoted

by Mh and Ml, respectively. A sum of weights, Shl of the particles that are resampled is computed by

Shl =
∑Mh+Ml

j=1 w[j], where j is chosen so that the conditions w[j] > Th or w[j] < Tl can be satisfied.

14

Then, one of stratified resampling algorithms such as the SR is conducted only on particles whose

weights satisfy the threshold constraints.

The PR can perform resampling fast because it resamples much smaller number of particles. Also,

it preserves moderate particles by not participating them in the resampling process. Moreover, the

PR can control the thresholds either to keep particle diversity or reduce the degeneracy.

3.3 Rank-based Resampling (RBR)

The RBR is adopted as a resampling algorithm from the rank-based selection in GA.23, 26 This

algorithm is newly proposed in this work to keep particle diversity as long as possible. The RBR

determines the rank of each particle by its weight and then, gives it a selection probability. With

the selection probabilities, the RBR performs one of the stratified resampling algorithms. In this

work, the following linear equation is used to give the selection probability, p(k) of k-th particle

based on its rank:

p(k) =
1
M

[
ηmax − (ηmax − ηmin)

(rank(k) − 1)
M − 1

]
(3)

where ηmax/M is the maximum selection probability of the highest weight, and ηmin/M is the

minimum selection probability of the lowest weight. The particle at the first rank gets the highest

selection probability whereas the particle at the last rank gets the lowest. When the number of

particles is fixed, ηmin = 2 − ηmax ≥ 0 should be satisfied, and ηmax usually has a value between

1 and 2. The resampling performance varies dependent on the ηmax. Relation between selection

probabilities and ranks of particles with changing ηmax is plotted in Fig. 4 using the example

in Section 3.1. The RBR is called an indirect resampling algorithm since it neglects the relative

information among the weights and assigns selection probabilities based on their ranks.

15

Fig. 4 Selection probabilities versus ranks of particles with changing ηmax.

4 Analysis of Resampling Process

In this section, performance of each resampling algorithm in the previous section is analyzed using

computer simulations. The effective sample size, the number of distinct particles, estimate errors,

and complexity are used for the thorough analysis. Simulations were performed on the sparse indoor

environment shown in Fig. 5. Simulations on a sparse environment are mainly analyzed because

a dense map is not realistic; an environment rarely has a dense map in an indoor environment.

Simulations were run with 100 particles because the effect of increasing the number of particles

more than that is not significant.11 In Fig. 5, the point A is where the feature error significantly

increases, and the points B and C are inner and outer loop-closure points, respectively. The weights

of all the particles are initialized with the same weight after resampling. The motion noise and

the observation noise of the robot were set to (0.3m/s, 3◦/s) and (0.1m, 1◦), respectively. Control

time and observation time were set to 25ms and 200ms, respectively. Every result averaged 50

16

Fig. 5 The simulation environment: a sparse environment with 50 features. The robot path is

given, but the robot cannot follow the path due to the motion noise. The feature error significantly

increases at point A, and the inner loop-closure occurs at point B and the outer loop-closure at

point C.

experiments in which a 3.0Ghz PC with 1GB RAM was used.

4.1 Number of Distinct Particles

A measure for the rate of loss of particle diversity is obtained by recording the number of distinct

particles in the set representing a landmark. Once a landmark goes out of the robot’s sight, resam-

pling causes some particles to be rejected and others to be replicated. At first, all of the particles

are distinct, which means they have different feature estimates about a landmark. As time passes,

only particles with high weights survive, and particles with low weights disappear together with

17

their feature estimates. Thus, the number of distinct estimates of the landmark becomes smaller.

The number of distinct particles is counted after every resampling process, and the results of the

resampling algorithms are shown in Fig. 6 including no-resampling (NR) case.

In all of the resampling algorithms, the number of distinct particles exponentially decreases al-

though there are a little differences among them. Especially the RSR shows the fastest convergence,

and the RBR shows the slowest convergence in Fig. 6. Better particle diversity in the RBR than

that in others is due to the characteristic of the RBR. Even though the variance of particles’ weights

is large, the RBR re-assigns the selection probability based on the rank of each particle. As the

ηmax in Eq. (3) varies, the number of distinct particles changes. In this work, the ηmax is set to 1.5.

However, after every resampling, the number of distinct particles significantly decreases. Soon after

closing the inner loop, there is left only one particle having the estimate of the landmark in the RSR.

The larger number of distinct particles is, the better it is to close a loop because new observations

can affect the locations of the landmark. Thus, it is worthwhile to maintain the maximum particle

diversity.

4.2 Effective Sample Size

To estimate how well the current set of M particles represents the true posterior, Liu27 introduced

the effective number of particles or the effective sample size, Neff . One can not exactly evaluate

Neff , but an estimate of Neff is given by

N̂eff =
1∑M

k=1(w[k])2
(4)

The idea behind this measure is to determine the variance of particles’ weights. As time progresses,

estimation errors grow larger, variance of particles’ weights increases, and statistical accuracy is

18

Fig. 6 Number of distinct particles of resampling algorithms including no-resampling (NR).

degraded. Thus, the larger N̂eff is, the better a particle filter estimates the target distribution.

In fact, this N̂eff is commonly used as a measure for degeneracy of particle filters. Stachniss et

al.28 found that N̂eff stayed constant when the new information was not helpful in identifying

the unlikely hypotheses or estimates represented by the individual particles. In addition, N̂eff

decreased over time when the new information could be used to identify that some particles are

less likely than others. The effective sample sizes of the resampling algorithms while performing

FastSLAM are plotted, and the results are compared to that of NR in Fig. 7. Note that in all

of the experiments, resampling was performed once the effective sample size fell below 75% of the

total number of particles rather than after each observation. In Fig. 7, N̂eff of NR exponentially

decreases while performing FastSLAM since particles degenerates over time without resampling.

All of the resampling algorithms show almost the same pattern. At point B, the inner loop is

closed, and at point C, the outer loop is closed. As a result, the effective sample size significantly

19

(a) NR (b) RSR

(c) PR (d) RBR

Fig. 7 N̂eff of NR, RSR, PR, and RBR while performing FastSLAM.

20

decreases at the two points. The decrease of the effective sample size at points B and C means

that a few particles have much higher weights than the others. Consequently, particles with low

weights disappeared in the particle set. However, the effective sample size is recovered soon after

resampling. This is because new particles having the same weight were drawn from the proposal

distribution of the survived particles. If particles were rejected in the set, survived particles would

share a common history or a robot path since loss of particles means loss of paths including feature

estimates dependent on those paths. To sum up, frequent loop-closing accelerates particle depletion

although it reduces errors of feature estimates and the robot pose.

4.3 Estimate Errors

The objective of SLAM is to build an accurate map about an environment and exactly localize a

robot based on the map. Therefore, the root mean square (RMS) errors of feature estimates, frmse

and pose estimates, prmse are key performance measures in SLAM, which are defined by

frmse =

√√√√ 1
M · N

M∑
k=1

N∑
i=1

(θi − µ
[k]
i,t)2 (5)

prmse =

√√√√ 1
M

M∑
k=1

(xtrue
t − x

[k]
t)2 (6)

where θi and xtrue
t are true poses of a landmark i and the robot, respectively. Here, M is the number

of particles, and N is the number of features which a particle has.

First, the RMS feature error of each resampling algorithm is shown in Fig. 8. For comparison,

the feature error of the NR is also displayed. In the NR, the RMS feature error does not decrease at

all since all of the particles survive and their estimation errors gradually increase. At point A, the

RMS feature errors drastically increase in all the algorithms because many landmarks are seen, and

21

Fig. 8 The RMS feature errors of the resampling algorithms.

the robot rotates. Rotation usually causes a bigger odometry error than translation. At the inner

loop-closure, point B, the RSR and the PR reduce the feature errors by more that 5cm, but not

the RBR. However, at the outer loop-closure, point C, all the algorithms rapidly reduce the feature

errors significantly, even though the RBR reduces errors a little bit slowly.

Second, the RMS position error of each resampling algorithm is shown in Fig. 9. Note that the

position error is computed using only x-y positions of particles. At the loop-closure points, all the

algorithms including the NR reduce the RMS position errors. In the NR, unlike the feature error, the

position error is reduced at the loop-closure points because particles are drawn taking into account

the initial feature estimates that are more precise than the last. On the contrary, the feature error

did not decrease because a new observation can not affect feature estimates in the past. In Fig. 9,

error reduction performance of the RSR and the PR is better than that of the RBR as the case

of the RMS feature error. The position errors converge to a very small value, about 0.05m after

22

Fig. 9 The RMS position errors of the resampling algorithms.

closing the outer loop.

4.4 Computational Complexity

Computational complexity should be considered when a robot conducts practical tasks. The com-

putational complexity of the FastSLAM algorithm requires O(MN) where M is the number of

particles, and N is the number of landmarks in the map.3 The linear complexity in M is by process-

ing M particles for every update. The linear complexity in N is due to the resampling process since

particles in the set may be replicated several times. At this time, the length of the particles depends

linearly on N , which makes the copying operation to also be linear in the size of the map. In fact,

Montemerlo presented an implementation that has O(Nlog2M) time-complexity.3 The complexity

of the RSR, PR, RBR is O(MN).

In this work, the processing time and the number of function calls of each resampling algorithm

23

Table III Comparison of the computational complexity of the resampling algorithms.

Algorithm Complexity # of func. calls Run-time (s)

RSR O(MN) 2296 8.23

PR O(MN) 2301 11.62

RBR O(MN) 2670 12.34

Table IV Summary of performance of the resampling algorithms.

Algorithm
Avr. num. of

distinct particles
Avr. N̂eff

RMS feature

error (m)

Avr.

Run-time (s)

RSR 13.7583 78.3545 0.2719 0.1646

PR 16.7826 78.2514 0.2781 0.2324

RBR 26.3222 74.8688 0.3004 0.2468

were obtained after the robot closed the outer loop. The number of function calls of each algorithm

is varied with particle diversity, exactly the variance of particles’ weights. The computational

complexity of each resampling algorithm is summarized in Table III. The number of function calls and

the run-time in Table III are the sums of 50 experiments. Resampling performance is summarized

in Table IV, which shows that there is no particularly good resampling algorithm among them. In

this case, scheduling of resampling is a more important factor for improving the SLAM performance.

This will be dealt in the next section.

24

Fig. 10 A particle set in FastSLAM consists of a path estimate, x
[k]
1:t and a set of estimates of

individual landmark locations with associated covariances, (µ[k],Σ[k]).

5 Compensation Technique

The number of distinct particles exponentially decreases in every resampling algorithm while the

RMS errors are reduced. However, in the NR, the RMS feature error did not decrease even though

all of the particles survive. Therefore, we propose a new technique that particles with low weights

are not rejected but compensated by particles with high weights. There is no rejected particle in this

compensation technique. Actually, the compensation technique does not resample particles, but it

has as the same effect as other resampling algorithms. To reduce computational cost scheduling of

compensation and reducing the number of particles are also considered in this section.

5.1 The Compensation Algorithm

A particle consists of a robot path, mean and covariance of each landmark as shown in Fig. 10.

In this figure, N and M are the number of landmarks and particles, respectively. Note that, when

implementing the FastSLAM algorithm, each particle represents a robot path, x
[k]
1:t but the recursive

equations at each time-step require only the most recent pose estimate, x
[k]
t . Dependency on the

25

robot path is recorded in the weight of a particle and its landmark estimates.

Instead of resampling, particles with low weights are compensated by particles with high weights

using the following equations:

x
[l]
t = w

[l]
t × x

[l]
t + w

[h]
t × x

[h]
t (7)

µ
[l]
i = w[l] × µ

[l]
i + w[h] × µ

[h]
i , where i = 1, ..., N (8)

Here, the superscripts [l] and [h] mean particles with low and high weights, respectively. For instance,

µ
[l]
i represents the i-th landmark estimate of a particle with a low weight. In the compensation

algorithm, the feature covariances of a particle is not compensated to reduce computational cost.

Note that only particles with low weights are compensated in the process whereas all of the particles

with high weights are preserved. Selection of a pair of particles for compensation can be easily done

by using probabilities or by the best one and the worst one, the second best and the second worst,

and so on. One can notice that the selection procedure has a similar mathematical structure as that

of the selection methods in GA.20

To evaluate the performance of the compensation algorithm, various simulations were performed,

and the results are compared with the best one among the resampling algorithms in the previous

section. First, the effective sample size of the compensation algorithm is shown in Fig. 11. The

effective sample size of the compensation algorithm is similar to those of other resampling algorithms,

but its effective sample size is slightly larger at the inner and outer loop-closure.

Second, the RMS estimate errors of the compensation algorithm are shown in Fig. 12, compared

with the result of the RSR. In the RMS errors, the compensation algorithm outperforms the RSR,

which shows the best result in the previous section.

Third, the effect of compensation pair selection is summarized in Table V. Three selection meth-

26

Fig. 11 The effective sample size of the compensation algorithm.

Table V Performance comparison according to selection methods.

Selection Method Avr. N̂eff RMS feature error (m) Avr. Run-time (s)

Random 76.187 0.2487 1.158

Roulette Wheel 76.189 0.2547 0.869

Rank-based 77.384 0.2109 1.108

ods were used, which are random, roulette wheel, and rank-based selection. The random method

randomly selects one among particles with low weights and the other among particles with high

weights. In the roulette wheel selection29, each slice on a roulette wheel has a width corresponding

to the particle’s selection probability. The particle that takes a large width has a high chance to be

selected. The rank-based method performs selection by pairing up the best one and the worst one,

the second best and the second worst, and so on. In Table V, the rank-based selection produces the

smallest feature error though its run-time is longer than the roulette wheel selection.

27

(a) Comparison of the RMS feature errors of RSR and the compensa-

tion algorithm

(b) Comparison of the RMS position errors of RSR and the compensa-

tion algorithm

Fig. 12 Comparison of the RMS errors of RSR and the compensation algorithm.

28

Table VI Performance comparison with varying the compensation ratio.

Compensation Ratio Avr. N̂eff RMS feature error (m) Avr. Run-time (s)

10% 73.009 0.3169 0.241

20% 74.908 0.2817 0.386

50% 76.618 0.2512 0.694

100% 77.384 0.2109 1.108

At last, the influence of the number of compensated particles is summarized in Table VI. In

the table, the compensation ratio of 100% means all of the particles with low weights have been

compensated. As the compensation ratio increases, the effective sample size increases and the RMS

feature error decreases. The disadvantage of the compensation algorithm is its run-time, which

increases as the compensation ratio increases. The compensation algorithm has many multiplications

proportional to the number of particles and features. Because of this disadvantage, the compensation

algorithm is suitable for a sparse environment with a small particle size. However, the disadvantage

is not critical for implementation, and it can be resolved by scheduling of compensation.

5.2 Scheduling of Compensation

Scheduling of resampling is very important and is an open problem. As presented in Section 4,

there is little difference in the performance of resampling algorithms. In this case, the best time to

instigate resampling is the problem rather than which resampling algorithm is to be used. Likewise,

the compensation algorithm should reduce computational cost by scheduling. Simulations were

performed to decide when it is the best time to instigate compensation by varying the threshold for

compensation, TN using the effective sample size. More specifically, compensation is instigated after

29

the ratio of the effective sample size falls below the TN . For instance, when TN = 1.0, compensation

is conducted after each observation.

First, comparisons of the effective sample size and the RMS feature error of the compensation

algorithm are shown in Fig. 13 and in Fig. 14 when the TN changes from 0.25 to 1.0. In Fig. 13, the

effective sample sizes when TN = 0.25 and TN = 0.5 are much smaller than those when TN = 0.75

and TN = 1.0. In Fig. 14, it seems that the performance when TN = 1.0 is best. However, in that

case the compensation algorithm does not reduce the RMS feature error at the outer loop-closure,

point C because particles lost their diversity due to the frequent compensation. On the contrary,

when TN = 0.75, the RMS feature error is reduced at the outer loop-closure.

Second, a comparison of the number of the algorithm calls is shown in Fig. 15 for checking

computational cost of the compensation algorithm. In this figure, the number of calls when TN = 1.0

is more than twice of that when TN = 0.75. Thus, TN = 1.0 is not adequate for the algorithm as

a threshold in the aspect of the computational cost. Based on the simulation results, the proper

threshold is 0.75 for when to instigate compensation.

5.3 Relation between the number of particles and performance

The compensation algorithm, compared with other resampling algorithms, takes more time to com-

pensate particles with low weights though it produces much better performance in estimate errors.

Simulations with varying the number of particles were performed to know that it is reasonable to

reduce the number of particles. The simulation result as well as the result of the RSR, when the

numbers of particles were 10, 50, and 100 is shown Fig. 16. The result using 50 particles is similar

to that using 100 particles, and outperforms the result of the RSR using 100 particles. The com-

30

(a) TN = 0.25 (b) TN = 0.5

(c) TN = 0.75 (d) TN = 1.0

Fig. 13 The effective sample sizes with different thresholds for the compensation algorithm

31

Fig. 14 Resampling performance of the compensation algorithm with different thresholds.

Fig. 15 Number of the algorithm calls with different thresholds.

32

Fig. 16 Comparison of the RMS feature errors with different number of particles of the compensation

algorithm and that of the RSR with 100 particles.

pensation algorithm does not show degeneracy of the algorithm even though the number of particles

decreases by 50 particles. When 50 particles are used, compensation is conducted in the half time

of when 100 particles are used. The run-time can be more reduced by diminishing the number of

particles to be compensated.

6 Conclusion

FastSLAM has been shown to cause the particle depletion problem, so it always produces over-

confident estimates of uncertainty as time progresses. FastSLAM degenerates over time because of

the particle depletion. The particle depletion problem is mainly due to the resampling process in

FastSLAM, which in turn eliminates reasonable particles with low weights.

33

In this paper, using the computer simulations we analyzed resampling algorithms: RSR, PR, and

RBR which was adopted as a resampling algorithm to alleviate particle depletion. The performance

measures for the thorough analysis are the effective sample size, the number of distinct particles,

estimate errors, and complexity. The RSR takes the fastest time to perform resampling, and the

RBR keeps distinct particles longest. The estimate errors, the paramount measure for SLAM are

small in the RSR and the PR, but not in the RBR. However, all of the resampling algorithms could

not resolve the particle depletion problem, which means the SLAM performance degenerates over

time.

Thus, we proposed the compensation technique instead of resampling for resolving the deple-

tion problem. It probabilistically compensates particles with low weights using particles with high

weights. As a result, estimate errors are significantly reduced compared to general resampling al-

gorithms though its run-time is longer than that of them. Since the particles in the compensation

technique are distinct, many particles performed the inner and outer loop-closure, so they reduced

the RMS errors.

Moreover, we decided the threshold for the time when it would be best to instigate compensation.

We also reduced the its run-time without loss of performance by diminishing the number of particles.

In the future, we will reduce the run-time of the compensation algorithm not by reducing the number

of particles but by efficiently selecting a pair of particles to be compensated.

Acknowledgements

This work was supported in part by MIC & IITA through IT Leading R&D Support Project,

the ASRI, the BK21 Information Technology at Seoul National University, and the Seoul R&BD

34

Program(10689M092991), Korea.

References

1. S. Ekvall, D. Kragic, and P. Jensfelt. “Object detection and mapping for service robot tasks.”

Robotica, 25(02), 175–187 (2007).

2. J. L. Leonard, R. N. Carpenter, and H. J. S. Feder. “Stochastic mapping using forward look

sonar.” Robotica, 19(05), 467–480 (2001).

3. M. Montemerlo. FastSLAM: A Factored Solution to the Simultaneous Localization and Mapping

Problem With Unknown Data Association. Ph.D. thesis, Carnegie Mellon University (2003).

4. S. Fazli and L. Kleeman. “Simultaneous landmark classification, localization and map building

for an advanced sonar ring.” Robotica, 25(02), 1–14 (2006).

5. M. A. Salichs and L. Moreno. “Navigation of mobile robots: open questions.” Robotica, 18(03),

227–234 (2000).

6. P. Newman, J. Leonard, J. D. Tardos, and J. Neira. “Explore and return: experimental vali-

dation of real-time concurrent mapping and localization.” IEEE International Conference on

Robotics and Automation, 2, 1802– 1809 (2002).

7. A. Doucet, N. de Freitas, K. Murphy, and S. Russell. “Rao-blackwellised particle filtering

for dynamic bayesian networks.” Proceedings of the Sixteenth Conference on Uncertainty in

Artificial Intelligence, pp. 176–183 (2000).

35

8. K. Murphy. “Bayesian map learning in dynamic environments.” Advances in Neural Information

Processing Systems (NIPS), 12, 1015–1021 (1999).

9. M. Montemerlo and S. Thrun. “Simultaneous localization and mapping with unknown data

association using fastslam.” Proceedings of 2003 IEEE International Conference on Robotics

and Automation, 2 (2003).

10. S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, Cambridge (2005).

11. T. Bailey, J. Nieto, and E. Nebot. “Consistency of the fastslam algorithm.” IEEE Intl. Conf.

on Robotics and Automation, pp. 424–427 (2006).

12. A. Kong, J. S. Liu, and W. H. Wong. “Sequential imputations and bayesian missing data

problems.” Journal of the American Statistical Association, 89(425), 278–288 (1994).

13. M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. “Fastslam 2.0: An improved particle

filtering algorithm for simultaneous localization and mapping that provably converges.” Pro-

ceedings of the seventeenth International Joint Conference on Artificial Intelligence (IJCAI-03)

(2003).

14. G. Grisetti, G. D. Tipaldi, C. Stachniss, W. Burgard, and D. Nardi. “Fast and accurate slam

with rao-blackwelized particle filters.” Robotics and Autonomous Systems, 55, 30–38 (2007).

15. A. Doucet and N. J. Gordon. “Simulation-based optimal filter for manoeuvring target tracking.”

SPIE proceedings series, pp. 241–255 (1999).

16. R. van der Merwe, N. de Freitas, A. Doucet, and E. Wan. “The unscented particle filter,

36

cambridge university engineering department, 2000.” Technical report, CUED/F-INFENG/TR

380, Cambridge, England (2000).

17. J. S. Liu, R. Chen, and T. Logvinenko. “A theoretical framework for sequential importance

sampling and resampling.” Sequential Monte Carlo Methods in Practice, pp. 225–246 (2001).

18. N. J. Gordon, D. J. Salmond, and A. F. M. Smith. “Novel approach to nonlinear/non-gaussian

bayesian state estimation.” Radar and Signal Processing, IEE Proceedings F, 140(2), 107–113

(1993).

19. G. Grisetti, C. Stachniss, and W. Burgard. “Improved techniques for grid mapping with rao-

blackwellized particle filters.” IEEE Transactions on Robotics, 23(1), 34–46 (2007).

20. T. Higuchi. “Monte carlo filter using the genetic algorithm operators.” Journal of Statistical

Computation and Simulation, 59(1), 1–23 (1997).

21. M. Bolić, P. M. Djuric, and S. J. Hong. “Resampling algorithms for particle filters: A com-

putational complexity perspective.” Eurasip Journal on Applied Signal Processing, 2004(15),

2267–2277 (2004).

22. —. “New resampling algorithms for particle filters.” 2003 IEEE International Conference on

Acoustics, Speech, and Signal Processing (ICASSP’03), 2 (2003).

23. J. E. Baker. “Adaptive selection methods for genetic algorithms.” Proceedings of the 1st Inter-

national Conference on Genetic Algorithms table of contents, pp. 101–111 (1985).

24. H. Durrant-Whyte and T. Bailey. “Simultaneous localization and mapping: Part i.” IEEE

Robotics and Automation Magazine, 13(2), 99–108 (2006).

37

25. D. Crisan and A. Doucet. “A survey of convergence results on particle filtering methods for

practitioners.” IEEE Transactions on Signal Processing, 50(3), 736–746 (2002).

26. D. Whitley. “The genitor algorithm and selection pressure: Why rank-based allocation of repro-

ductive trials is best.” Proceedings of the Third International Conference on Genetic Algorithms,

1, 116–121 (1989).

27. J. S. Liu. “Metropolized independent sampling with comparisons to rejection sampling and

importance sampling.” Statistics and Computing, 6(2), 113–119 (1996).

28. C. Stachniss, G. Grisetti, and W. Burgard. “Recovering particle diversity in a rao-blackwellized

particle filter for slam after actively closing loops.” Proc. of the IEEE Int. Conf. on Robotics &

Automation (ICRA) (2005).

29. T. Bäck, D. B. Fogel, and Z. Michalewicz. Evolutionary Computation 1: Basic Algorithms and

Operators. Institute of Physics Publishing, Bristol (2000).

38

	Introduction
	FastSLAM Algorithm
	General Resampling Process for FastSLAM
	Residual Systematic Resampling (RSR)
	Partial Resampling (PR)
	Rank-based Resampling (RBR)

	Analysis of Resampling Process
	Number of Distinct Particles
	Effective Sample Size
	Estimate Errors
	Computational Complexity

	Compensation Technique
	The Compensation Algorithm
	Scheduling of Compensation
	Relation between the number of particles and performance

	Conclusion

